53 resultados para Cerebral blood flow

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O2 consumption (VO2 max) followed by 30 min at 70% VO2 max either with [angiotensin-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an ~20-fold increase (P < 0.001) in ANG II levels in the control group (5.4 ± 1.0 to 102.0 ± 25.1 pg/ml), whereas this response was blunted during ACE blockade (8.1 ± 1.2 to 13.2 ± 2.4 pg/ml) and in response to an orthostatic challenge performed postexercise. Apart from lactate and cortisol, which were higher in the ACE-blockade group vs. the control group, hormones, metabolites, VO2, and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 ± 0.12, ACE blockade; 1.59 ± 0.18 l/min, control) decreased during moderate exercise (0.78 ± 0.07, ACE blockade; 0.74 ± 0.14 l/min, control), whereas splanchnic glucose production (at rest: 0.50 ± 0.06, ACE blockade; 0.68 ± 0.10 mmol/min, control) increased during moderate exercise (1.97 ± 0.29, ACE blockade; 1.91 ± 0.41 mmol/min, control). Refuting a major role of the RAS for these responses, no differences in the pattern of change of splanchnic blood flow and splanchnic glucose production were observed during ACE blockade compared with controls. This study demonstrates that the normal increase in ANG II levels observed during prolonged exercise in humans does not play a major role in the regulation of splanchnic blood flow and glucose production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats.

RESEARCH DESIGN AND METHODS: Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 µmol/l) or saline was infused into the epigastric artery of the contracting leg.

RESULTS: Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by ~35%, without affecting AMP-activated protein kinase (AMPK) activation.

CONCLUSIONS: NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined forearm blood flow (FBF) in individuals with chronic heart failure (CHF) at rest, moderate exercise, and following limb occlusion. FBF was measured by venous occlusion plethysmography in CHF patients (n = 43) and healthy age-matched volunteers (n = 8) at rest and during exercise consisting of intermittent isometric hand squeezing at 15, 30, and 45% of maximum voluntary contraction (MVC). Peak vasodilatory capacity was also determined following the release of an occluding arm cuff. FBF was lower in CHF patients during exercise and during peak reactive hyperemia (PRH) compared to healthy volunteers, but there was no significant difference between groups at rest. Peak vasodilatory capacity was significantly higher in healthy volunteers than the CHF group ((30.6 ± 8.6 ml±100 mL-1±min-1 and 18.3 ± 6.9 ml±100 mL-1±min-1, respectively). Local blood flow stimulation in response to exercise or limb occlusion is reduced in individuals with CHF, however, there was no difference in resting flows between the two groups, suggesting vasodilatory medication may restore resting blood flow to healthy values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty-nine CHF patients (New York Heart Association Functional Class = 2.3±0.5; left ventricular ejection fraction 28%±7%; age 65±11 years; 33:6 male:female) underwent 2 identical series of tests, 1 week apart, for strength and endurance of the knee and elbow extensors and flexors, VO2peak, HRV, FBF at rest, and FBF activated by forearm exercise or limb ischemia. Patients were then randomized to 3 months of resistance training (EX, n = 19), consisting of mainly isokinetic (hydraulic) ergometry, interspersed with rest intervals, or continuance with usual care (CON, n = 20), after which they underwent repeat endpoint testing. Combining all 4 movement patterns, strength increased for EX by 21±30% (mean±SD, P<.01) after training, whereas endurance improved 21±21% (P<.01). Corresponding data for CON remained almost unchanged (strength P<.005, endurance P<.003 EX versus CON). VO2peak improved in EX by 11±15% (P<.01), whereas it decreased by 10±18% (P<.05) in CON (P<.001 EX versus CON). The ratio of low-frequency to high-frequency spectral power fell after resistance training in EX by 44±53% (P<.01), but was unchanged in CON (P<.05 EX versus CON). FBF increased at rest by 20±32% (P<.01), and when stimulated by submaximal exercise (24±32%, P<.01) or limb ischemia (26±45%, P<.01) in EX, but not in CON (P<.01 EX versus CON).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isolated, perfused salmon tail preparation showed oxyconformance at low oxygen delivery rates. Addition of pig red blood cells to the perfusing solution at a haematocrit of 5 or 10% allowed the tail tissues to oxyregulate. Below ca. 60 ml O2 kg−1 h−1 of oxygen delivery (DO2), VO2 was delivery dependent. Above this value additional oxygen delivery did not increase VO2 of resting muscle above ca. 35 ml O2 kg−1 h−1. Following electrical stimulation, VO2 increased to ca. 65 ml O2 kg−1 h−1, with a critical DO2 of ca. 150 ml O2 kg−1 h−1. Dorsal aortic pressure fell to 69% of the pre-stimulation value after 5 min of stimulation and to 54% after 10 min. Microspheres were used to determine blood flow distribution (BFD) to red (RM) and white muscle (WM) within the perfused myotome. Mass specific BFD ratio at rest was found to be 4.03 ± 0.49 (RM:WM). After 5 min of electrical stimulation the ratio did not change. Perfusion with saline containing the tetrazolium salt 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) revealed significantly more mitochondrial activity in RM. Formazan production from MTT was directly proportional to time of perfusion in both red and WM. The mitochondrial activity ratio (RM:WM) did not change over 90 min of perfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Light-load exercise training with blood flow restriction (BFR) increases muscle strength and size. However, the hemodynamics of BFR exercise appear elevated compared with non-BFR exercise. This questions the suitability of BFR in special/clinical populations. Nevertheless, hemodynamics of standard prescription protocols for BFR and traditional heavy-load exercise have not been compared. We investigated the hemodynamics of two common BFR exercise methods and two traditional resistance exercises. Twelve young males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (a) heavy load [HL; 80% one-repetition maximum (1-RM)]; (b) light load (LL; 20% 1-RM); and two other light-load trials with BFR applied (c) continuously at 80% resting systolic blood pressure (BFR-C) or (d) intermittently at 130% resting systolic blood pressure (BFR-I). Hemodynamics were measured at baseline, during exercise, and for 60-min post-exercise. Exercising heart rate, blood pressure, cardiac output, and rate–pressure product were significantly greater for HL and BFR-I compared with LL. The magnitude of hemodynamic stress for BFR-C was between that of HL and LL. These data show reduced hemodynamics for continuous low-pressure BFR exercise compared with intermittent high-pressure BFR in young healthy populations. BFR remains a potentially viable method to improve muscle mass and strength in special/clinical populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a progressive disease, involving the build-up of lipid streaks in artery walls, leading to plaques. Understanding the development of atherosclerosis and plaque vulnerability is critically important since plaque rupture can result in heart attack or stroke. Plaques can be divided into two distinct types: those likely to rupture (vulnerable) or less likely to rupture (stable). In the last decade, researchers have been interested in studying the influence of the mechanical effects (blood shear stress, pressure forces and structural stress) on the plaque formation, progression and rupture processes but no general agreement has been found. The purpose of the present work is to include more realistic conditions for the numerical calculations of the blood flow by implementing real geometries with plaques in the numerical model. Hemodynamical parameters are studied in both diseased and healthy configurations. The healthy configuration is obtained by removing numerically the plaques from three dimensional geometries obtained by micro-computed tomography. A new hemodynamical parameter is also introduced to relate the location of plaques to the characteristics of the flow in the healthy configuration. © 2014 .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Light-load blood flow restriction exercise (BFRE) may provide a novel training method to limit the effects of age-related muscle atrophy in older adults. Therefore, the purpose of this study was to compare the haemodynamic response to resistance and aerobic BFRE between young adults (YA; n = 11; 22 ± 1 years) and older adults (OA; n = 13; 69 ± 1 years). METHOD: On two occasions, participants completed BFRE or control exercise (CON). One occasion was leg press (LP; 20 % 1-RM) and the other was treadmill walking (TM; 4 km h(-1)). Haemodynamic responses (HR, [Formula: see text], SV and BP) were recorded during baseline and exercise. RESULT: At baseline, YA and OA were different for some haemodynamic parameters (e.g. BP, SV). The relative responses to BFRE were similar between YA and OA. Blood pressures increased more with BFRE, and also for LP over TM. [Formula: see text] increased similarly for BFRE and CON (in both LP and TM), but with elevated HR and reduced SV (TM only). CONCLUSION: While BFR conferred slightly greater haemodynamic stress than CON, this was lower for walking than leg-press exercise. Given similar response magnitudes between YA and OA, these data support aerobic exercise being a more appropriate BFRE for prescription in older adults that may contribute to limiting the effects of age-related muscle atrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used transcranial magnetic stimulation (TMS) to investigate whether an acute bout of resistance exercise with blood flow restriction (BFR) stimulated changes in corticomotor excitability (motor evoked potential, MEP) and short-interval intracortical inhibition (SICI), and compared the responses to two traditional resistance exercise methods. Ten males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (1) heavy-load (HL: 80% one-repetition maximum [1-RM]); (2) light-load (LL; 20% 1-RM) and two other light-load trials with BFR applied; (3) continuously at 80% resting systolic blood pressure (BFR-C); or (4) intermittently at 130% resting systolic blood pressure (BFR-I). MEP amplitude and SICI were measured using TMS at baseline, and at four time-points over a 60 min post-exercise period. MEP amplitude increased rapidly (within 5 min post-exercise) for BFR-C and remained elevated for 60 min post-exercise compared with all other trials. MEP amplitudes increased for up to 20 and 40 min for LL and BFR-I, respectively. These findings provide evidence that BFR resistance exercise can modulate corticomotor excitability, possibly due to altered sensory feedback via group III and IV afferents. This response may be an acute indication of neuromuscular adaptations that underpin changes in muscle strength following a BFR resistance training programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This thesis provides evidence of central nervous system adaptations as well as reduced exercising haemodynamics and perceptual responses when light-load resistance exercise/training is performed with blood flow restriction. In addition, this type of training appears beneficial in order to target gains in strength and muscle mass in healthy young populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND : Optimal cerebral oxygenation is considered fundamental to cerebral protection in cardiac arrest (CA) patients. Hypercapnia increases cerebral blood flow and may also improve cerebral oxygenation. It is uncertain, however, whether this effect occurs in mechanically ventilated early survivors of CA. METHODS: We enrolled mechanically ventilated resuscitated patients within 36 h of their cardiac arrest. We performed a prospective double cross-over physiological study comparing the impact of normocapnia (PaCO2 35-45 mmHg) vs. mild hypercapnia (PaCO2 45-55 mmHg) on regional cerebral tissue oxygen saturation (SctO2) assessed by near infrared spectroscopy (NIRS).RESULTS: We studied seven adult CA patients with a median time to return of spontaneous circulation of 28 min at a median of 26 h and 30 min after CA. During normocapnia (median EtCO2 of 32 mmHg [30-41 mmHg] and PaCO2 of 37 mmHg [32-45 mmHg]) the median NIRS-derived left frontal SctO2 was 61% [52-65%] and the right frontal SctO2 was 61% [54-68%]. However, during mild hypercapnia (median EtCO2 of 49 mmHg [40-57 mmHg] and PaCO2 of 52 mmHg [43-55 mmHg) the median left frontal SctO2 increased to 69% [59-78%] and the right frontal SctO2 increased to 73% [61-76%])(p = 0.001, for all comparisons). CONCLUSION: During the early post-resuscitation period, in mechanically ventilated CA patients, mild hypercapnia increases cerebral oxygenation as assessed by NIRS. Further investigations of the effect of prolonged mild hypercapnia on cerebral oxygenation and patient outcomes appear justified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we use the modified and integrated version of the balloon model in the analysis of fMRI data. We propose a new state space model realization for this balloon model and represent it with the standard A,B,C and D matrices widely used in system theory. A second order Padé approximation with equal numerator and denominator degree is used for the time delay approximation in the modeling of the cerebral blood flow. The results obtained through numerical solutions showed that the new state space model realization is in close agreement to the actual modified and integrated version of the balloon model. This new system theoretic formulation is likely to open doors to a novel way of analyzing fMRI data with real time robust estimators. With further development and validation, the new model has the potential to devise a generalized measure to make a significant contribution to improve the diagnosis and treatment of clinical scenarios where the brain functioning get altered. Concepts from system theory can readily be used in the analysis of fMRI data and the subsequent synthesis of filters and estimators.